Integrability in Quantum Theory, and Applications

Samson L. Shatashvili

Trinity College, Dublin & IHES, Bures-Sur-Yvette
Supersymmetric vacua of gauge theories with four supercharges ⇔ Bethe eigenstates and excitation spectrum of integrable lattice models, Hitchin systems, its limits (quantum many body systems)

- Thermodynamic Bethe ansatz (TBA) type of equations, developed for quantum integrable systems, play the central role

- TBA type equations appear in the study of wall-crossing phenomena in counting of BPS states in $\mathcal{N}=2$ theories

- Correspondence between 4d instanton calculus and two 2d CFT has important consequences, both for CFT and gauge theory

- TBA type equations appear in computing the amplitudes and the expect. values of Wilson and ’t Hooft loops for maximal SUSY

- Quantum integrability is central in the study of maximally supersymmetric gauge theories in four dimensions when computing the anomalous dimensions, and in AdS/CFT correspondence
• The spectrum of the equivariant Donaldson theory and its generalizations ⇔ the spectrum of the quantized SW theory

• Partition functions of closed topological strings ⇔ the tau-functions of classical integrable hierarchies, and the inclusion of open strings connects to quantum integrability

• Dimer models and their applications to the topological strings on the toric Calabi-Yau manifolds links to the quantum integrability

• Geometric Langlands correspondence, its quantum field theory realization, and the possibility to reach out to number theory

• SLE, random growth and matrix models, emergent geometry

• Connections and inter-relations with representation theory

• The integrable QFT’s in 1+1 dimensions (sine-Gordon, etc.)

• Theory of solitons ⇔ Classical Inverse Scattering Method, Lax pairs, Spectral curves, etc. and quantization
NS '09: For every quantum integrable system, solved by BA, there is a SUSY gauge theory with 4 supercharges, Q_+, Q_-, Q_+, Q_-. s.t.:

a) exact Bethe eigenstates correspond to SUSY vacua,
b) ring of commuting Hamiltonians \iff (twisted) chiral ring.

- The effective twisted superpotential \iff Yang-Yang function

\[
\tilde{W}_{\text{eff}}(\sigma) = Y(\lambda)
\]

\[
\sigma_i = \lambda_i; \quad i = 1, \ldots, N; \quad G = U(N)
\]

- VEV of chiral ring operators O_k \iff Energies:

\[
<\lambda|O_k|\lambda> = E_k(\lambda)
\]

\[
H_k \Psi(\lambda) = E_k(\lambda) \Psi(\lambda)
\]

Vacua/Bethe Equations - critical points of $\tilde{W}_{\text{eff}}(\sigma)/Y(\lambda)$ as functions of abelian components of scalar field σ_i / rapidities λ_i.
What are these quantum integrable systems?

After massive fields (2d) are integrated out chiral ring generators are invariant functions of \(\Sigma = \sigma + \ldots \) on Coulomb branch.

SUSY vacua - there are two options: 1. topological or 2. physical.

1. Topologically twisted (on cylinder) abelianized theory has the action completely determined by \(\tilde{W}^{\text{eff}}(\sigma) \) of physical theory:

\[
S_{\text{top}} = \int \left[\frac{\partial \tilde{W}^{\text{eff}}(\sigma)}{\partial \sigma_i} F^i(A) + \frac{\partial^2 \tilde{W}^{\text{eff}}(\sigma)}{\partial \sigma_i \partial \sigma_j} \lambda^i \wedge \lambda^j \right]
\]

compare \(S_{2d-YM} = \int \left[\sigma_i F^i(A) + \lambda^i \wedge \lambda^j \right] \)

Canonical quantization - momentum conjugate to the monodromy of abelian gauge field \(x^i = \int_{S^1} A^i \) is quantized:

\[
\frac{1}{2\pi i} \frac{\partial \tilde{W}^{\text{eff}}(\sigma)}{\partial \sigma^i} = n_i
\]
2. Physical: suppose we have the theory with the effective twisted superpotential $\tilde{W}^{\text{eff}}(\sigma)$ (abelianized).

The target space of the effective sigma model is disconnected, with \vec{n} labeling the connected components (gauge flux quantization) with potential:

$$U_{\vec{n}}(\sigma) = \frac{1}{2} g^{ij} \left(-2\pi i n_i + \frac{\partial \tilde{W}^{\text{eff}}}{\partial \sigma^i} \right) \left(+2\pi i n_j + \frac{\partial \tilde{W}^{\text{eff}}}{\partial \bar{\sigma}^j} \right)$$

Now we need to find the minimum of potential - again:

$$\frac{1}{2\pi i} \frac{\partial \tilde{W}^{\text{eff}}(\sigma)}{\partial \sigma^i} = n_i$$

Or equivalently - SUSY vacua correspond to solution of equation:

$$\exp \left(\frac{\partial \tilde{W}^{\text{eff}}(\sigma)}{\partial \sigma^i} \right) = 1$$
• XXX spin chain - 2d gauge theory

For $SU(2)$, $s = \frac{1}{2}$ spin chain of length L in N-particle sector $\Leftrightarrow U(N)$ 2d $N = 2$ gauge theory with L fundamentals, L anti-funds and 1 adjoint, with twisted masses m_i and complexified θ term; m_i are impurities μ_i, θ - quasi-periodic boundary conditions, ...

• XXXZ spin chain - 3d gauge theory on $\mathbb{R}^2 \times S^1$

• XYZ spin chain - 4d gauge theory on $\mathbb{R}^2 \times T^2$

• Arbitrary spin group, representation, impurities, limiting models

• NLS, N-particles on S^1, δ-function potential - 2d $\mathcal{N} = 4$ +...

• Periodic Toda - 4d pure $\mathcal{N} = 2$ theory on $\mathbb{R}^2 \times \mathbb{R}_\epsilon^2$

• Elliptic Calogero-Moser - 4d $\mathcal{N} = 2^*$ theory on $\mathbb{R}^2 \times \mathbb{R}_\epsilon^2$
Consider 2d pure $N = 4$ gauge theory ($G = U(N)$) broken down to $N = 2$ by the twisted mass (m) term for the adjoint chiral multiplet - $N = 2^*$. Add tree level twisted superpotential:

$$\tilde{W}(\sigma) = \frac{1}{2} tr\sigma^2$$

Vacuum equations:

$$e^{i\sigma_j} = \prod_{i=1}^{N} \frac{\sigma_i - \sigma_j + m}{\sigma_i - \sigma_j + m}$$

For $m = ic$, $c \in \mathbb{R}$, this is Bethe equation for NLS quantum theory in N-partical sector.

This is the first example treated in the topological field theory language in MNS ’97 and later in GS ’06–’07.
This topological theory, YMH theory, computes equivariant intersection numbers on the moduli space of Higgs bundles introduced by Hitchin:

$$F_{z\bar{z}}(A) = [\Phi_z, \Phi_{\bar{z}}]$$

$$\nabla_z(A)\Phi_{\bar{z}} = 0$$

$$\nabla_{\bar{z}}(A)\Phi_z = 0$$

modulo unitary gauge transformations:

$$A \rightarrow g^{-1}Ag + g^{-1}dg; \quad \Phi \rightarrow g^{-1}\Phi g$$

z - local coordinates on Riemann surface, Φ - adjoint 1-form.

Moduli space of solutions to Hitchin equations - phase space of algebraic integrable system. It is hyperkahler. See later.

NLS in N-particle sector is described by integrable system of N non-relativistic particles on S^1 with δ-function interactions.
\[H_2 = -\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} + c \sum_{1 \leq i < j \leq N} \delta(x_i - x_j) \]

Eigenvectors - spherical vectors in the representation theory of degenerate double affine Hecke algebra.

Latter is connected to the representation theory of \(GL(N, Q_p) \) - the wave functions are a limit of Hall-Littlewood polynomials, generalized zonal spherical functions for \(GL(N, Q_p) \):

\[
\prod_i \frac{1 - t}{1 - t^{m_i}} \sum_{w \in S_N} (-1)^{l(w)} w(\Lambda_1^{\mu_1} ... \Lambda_N^{\mu_N}) \prod_{i < j} \frac{\Lambda_i - \Lambda_j t}{\Lambda_i - \Lambda_j}
\]

\((\mu_1, ..., \mu_N)\) is a partition of length at most \(N \): \((1^{m_1}, .., r^{m_r}, ...)\).

\(NLS\) wave-functions correspond to analytic continuation with

\[
\mu_i = \frac{x_i}{\epsilon}, \quad \Lambda_i = e^{2\pi \epsilon \sigma_i}, \quad t = e^{2\pi i c \epsilon}, \quad \epsilon \to 0 \quad [p \to 1]
\]

This is continuous limit of discretized version of \(H_2 \).
GL(N, Q_p) zonal spherical functions are Macdonald’s \(M(q, t) \) for \(q = 0, t = p^{-1} \). Eigenfunctions of \(H_2 \) discretized (van Diejen, ’06).

\[M(q, t = q^\nu) : \] relativistic Calogero-Moser-Sutherland (Ruijsenaars ’87) \(\rightarrow G/G \ WZW \), with Wilson lines (Gorsky, Nekrasov ’94).

There is another 2d (generalized) \(G/G \ WZW \) interpretation which has limit to \(YMH \) topological theory for \(k \rightarrow \infty \) (GS ’06).

Partition function is sum over (Bethe equations):

\[
e^{2\pi i \sigma_j (k+c_v)} \prod_{i \neq j} \frac{te^{2\pi i (\sigma_i - \sigma_j)} - 1}{te^{2\pi i (\sigma_j - \sigma_i)} - 1} = 1
\]

These are Bethe equations for \(XXZ \) spin chain with spin \(s \) and in \(s \rightarrow -i\infty \) limit. Latter corresponds to supersymmetric vaua of 3d \(N = 2 \) gauge theory (form the list shown earlier) on \(R^2 \times S^1 \).

For elliptic case - \(\Omega \)-background instead of \(KK \). Elliptic version of Ruijsenaars ’87 appears in 5d SYM on \((S^1 \times R^2_\epsilon) \times R^2 \), connects to everything. What about 6d theory on \((T^2 \times R^2_\epsilon) \times R^2 \)?
Mac(q, t)

- $q=0$
- $q=t^\nu$, $q\rightarrow 1, t\rightarrow 1$

HL

- $t=1/p$
- $GL(Q_p)$

Jack

- $t=0$
- $\nu=1$

Schur

Ruijsenaars

- $q=t^\nu$

- $q=0$
- $q=t^\nu$, $q\rightarrow 1, t\rightarrow 1$

NLS

- $t=0$
- $\nu=1$

Calogero–Moser–Sutherland

free fermions
4d SYM and Algebraic Integrable Systems

SW prepotential $\mathcal{F}(a)$ interpreted in terms of classical AIS -
pToda, eCM (GKMM '95, MW '95, DW '95):

- A complex algebraic manifold M^{2N} of complex dimension $2N$
 with non-degenerate, closed holomorphic $(2, 0)$-form $\Omega_C^{2,0}$

- A holomorphic map $H : M \to C^N$, fibers $J_h = H^{-1}(h)$ are
 (polarized) abelian varieties (complex tori), $\{H_i, H_j\} = 0$

Polarization - Kahler form ω whose restriction on each fiber is
integral class: $[\omega] \in H^2(J_h, Z) \cap H^{1,1}(J_h)$. $\langle A_i, B^j \rangle = \delta^j_i$,
basis in $H_1(J_h, Z)$. “Action variables”:

$$a_i = \int_{A_i} \Theta_C, \quad a_D^i = \int_{B^i} \Theta_C, \quad \Omega_C^{2,0} = d\Theta_C$$

Twice as many as the dimension of base - they must be related:

$$a_D^i = \frac{\partial \mathcal{F}(a)}{\partial a^i}; \quad \theta = \sum_{i=1}^{N} a_D^i da_i = d\mathcal{F}(a)$$
$\mathcal{N} = 2$ gauge theory on 2d Ω-background $R^2 \times R^2_\epsilon$ is a deformation of $\mathcal{N} = 2$ theory on $R^2 \times R^2$ with one, equivariant, parameter ϵ which corresponds to the rotation of second R^2 around its origin.

Only 2d super-Poincare invariance is unbroken, four Q’s. The effective theory is 2d with four supercharges. Alternative to KK.

NS ’09: As such it has 2d effective \mathcal{W}^{eff}; computed as a limit of the partition function $\mathcal{Z}(\{a\}, \epsilon_1, \epsilon_2)$ in general Ω-background $R^2_{\epsilon_1} \times R^2_{\epsilon_2}$, e.g. for $N = 2^*$ theory (eCM; $q = e^{i\tau}$; $\tau = i/g^2 + \theta$):

$$\mathcal{W}^{eff}(a; q, m, \epsilon) = \lim_{\epsilon_2 \to 0} \epsilon_2 \log \mathcal{Z}(a; q, m, \epsilon, \epsilon_2) = \frac{\mathcal{F}_{eCM}(a; q, m)}{\epsilon} + ...$$

$$\mathcal{W}^{eff}(a; q, m, \epsilon) = \mathcal{W}_{pert}(a; \tau, m, \epsilon) + \mathcal{W}_{inst}(a; q, m, \epsilon)$$

$$\exp\left(\frac{\partial \mathcal{W}_{pert}}{\partial a_i}\right) = e^{\frac{\pi i \tau a_i}{\epsilon}} \prod_{j \neq i} S(a_i - a_j); \quad S(x) = \frac{\Gamma\left(\frac{-m+x}{\epsilon}\right) \Gamma\left(1 - \frac{x}{\epsilon}\right)}{\Gamma\left(\frac{-m-x}{\epsilon}\right) \Gamma\left(1 + \frac{x}{\epsilon}\right)}$$
\[W_{\text{inst}}(a) = \int dx \left[-\frac{\chi(x)}{2} \log \left(1 - qQ(x)e^{-\chi(x)} \right) + \text{Li}_2 \left(qQ(x)e^{-\chi(x)} \right) \right] \]

\[\chi(x) = \int dy G_0(x - y) \log \left(1 - qe^{-\chi(y)}Q(y) \right) \]

\[G_0(x) = \partial_x \log \frac{(x + \epsilon)(x + m)(x - m - \epsilon)}{(x - \epsilon)(x - m)(x + m + \epsilon)} \]

\[Q(x) = \frac{P(x - m)P(x + m + \epsilon)}{P(x)P(x + \epsilon)}; \quad P(x) = \prod_{l=1}^{N} (x - a_l) \]

Energy spectrum of properly quantized system:

\[E_2 = \epsilon q \frac{\partial}{\partial q} \mathcal{W}^{\text{eff}}(a; q, m, \epsilon) = \epsilon \frac{\partial}{\partial \tau} \mathcal{W}^{\text{eff}}(a; q, m, \epsilon) \]

Evaluated on solutions of:

\[\frac{1}{2\pi i} \frac{\partial \mathcal{W}^{\text{eff}}(a; q, m, \epsilon)}{\partial a^i} = n_i \]
What is the meaning of this $\mathcal{W}^{eff}(a; q, m, \epsilon)$ (YY-function) in terms of the geometry of classical AIS?

Answered in RNS ’11, with the help of NW ’10 interpretation of above quantization and work on many body systems from ’80-’90’s.

Important example - Hitchin integrable system on $\Sigma_{g,n}$:

$$F_{z\bar{z}}(A) = [\Phi_{z}, \Phi_{\bar{z}}]$$

$$\nabla_{z}(A)\Phi_{\bar{z}} = 0$$

$$\nabla_{\bar{z}}(A)\Phi_{z} = 0$$

modulo unitary gauge transformations :

$$A \rightarrow g^{-1}Ag + g^{-1}dg; \quad \Phi \rightarrow g^{-1}\Phi g$$

Moduli space of solutions to Hitchin equations - phase space of algebraic integrable system. It is hyperkähler.

$g = 1, n = 1, G = U(N)$: N-particle class. eCM $\Leftrightarrow N = 2^* \text{ SYM.}$
Complex structure I - holomorphic coordinates $(A_z, \Phi \overline{z})$. Depends on the choice of complex structure on $\Sigma_{g,n}$:

$$\Omega_{I}^{2,0} = \int_{\Sigma_{g,n}} \delta A_z \wedge \delta \Phi \overline{z}$$

Poisson commuting H_i's for PGL_2 (μ_i: $3g-3+n$ Beltrami diffs):

$$H_i = \int_{\Sigma_{g,n}} \mu_i \text{tr} \Phi^2 \overline{z}$$

$\Sigma_{g=0,n}$ - Hitchin H_i's = Gaudin Hamiltonians.

Pick complex structure J (replace G by L^G) - holomorphic coord. $(A_z + i\Phi_z, A_{\overline{z}} + i\Phi_{\overline{z}})$; independent of complex structure on $\Sigma_{g,n}$:

$$\Omega_{J}^{2,0} = \int_{\Sigma_{g,n}} \delta A^c \wedge \delta A^c; \quad A^c = A + i\Phi$$

In complex structure J Hitchin moduli space is the moduli space of G^C flat connections modulo complexified gauge transformations:

$$\{ \quad F(A + i\Phi) = 0 \quad / \quad G^C \quad gauge \quad transformations \}$$
For $L G = SL(2, C)$ - fix some reference complex structure on $\Sigma_{g,n}$, local coordinates (w, \bar{w}) and describe generic complex structure via Beltrami diffs $\mu = \mu^w_w d\bar{w} \partial_w$; pick a gauge:

$$A\bar{w} - \mu A_w = \begin{pmatrix} -\frac{1}{2} \partial \mu & 0 \\ -\frac{1}{2} \partial^2 \mu & \frac{1}{2} \partial \mu \end{pmatrix}, \quad A_w = \begin{pmatrix} 0 & 1 \\ T & 0 \end{pmatrix}$$

where T obeys the compatibility condition (from flatness):

$$(\bar{\partial} - \mu \partial - 2\partial \mu) T = -\frac{1}{2} \partial^3 \mu$$

Now

$$\Omega^2;0 = \int_{\Sigma_{g,n}} \delta \mu \wedge \delta T$$

SL_2 oper - 2nd order diff. operator, acting on -1/2 differentials:

$$\mathcal{D} = -\partial^2 + T(z)$$

G-opers can be defined for general surface with punctures, where opers develop poles - here we consider only regular singularities.
Restrict to \(g = 0 \) with \(n \) marked points.

\[
T(z) = \sum_{a=1}^{n} \frac{\Delta_a}{(z - x_a)^2} + \sum_{a=1}^{n} \frac{\epsilon_a}{z - x_a}
\]

\(\Delta_a \) are fixed and \(\epsilon_a \) obey \((\Omega_{j}^{2,0} = \sum_{a=1}^{n} \delta \epsilon_a \wedge \delta x_a) \):

\[
\sum_{a=1}^{n} \epsilon_a = 0
\]

\[
\sum_{a=1}^{n} (x_a \epsilon_a + \Delta_a) = 0
\]

\[
\sum_{a=1}^{n} (x_a^2 \epsilon_a + 2x_a \Delta_a) = 0
\]

Fix complex structure (\(x_a \)'s); space of opers, parametrized by \(\epsilon_a \), is a Lagrangian submanifold in the moduli space of flat connections. One can introduce other, topological, Darboux coordinates.

RNS '11: *YY-function is essentially the generating function of this Lagrangian submanifold in the special Darboux coord \((\alpha_a, \beta_a)\).*
\[\beta_a = \frac{\partial W_{\text{eff}}(\{\alpha_a\}, \{x_a\})}{\partial \alpha_a}; \quad \epsilon_a = \frac{\partial W_{\text{eff}}(\{\alpha_a\}, \{x_a\})}{\partial x_a} \]

\(g_i \) - monodromies around each point, \(\text{tr} g_i = m_i \) fixed, and \((\Delta_i, \mu_i)\) expressed in \(m_i \). Darboux variables \((\alpha_s, \beta_s)\) \((\alpha_t, \beta_t)\) correspond to “s-chanel” (“t”) degenerations.

From the point of view of AGT relation this is a classical limit in CFT, so one should see it purely in CFT language (Teschner ’10). For special values of \(m_i \) such formulas were seen before in Liouville theory (Zam.-Zam. ’95, Takhtajan-Zograf ’88); in the approach of RNS ’11 it should correspond to the particular choice of real slice.